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Nearest neighbor embedding with different time delays
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A nearest neighbor based selection of time delays for phase space reconstruction is proposed and compared
to the standard use of time delayed mutual information. The possibility of using different time delays for
consecutive dimensions is considered. A case study of numerically generated solutions of the Lorenz system is
used for illustration. The effect of contamination with various levels of additive Gaussian white noise is
discussed.
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Reconstructing the phase space of a dynamical systefiormation. Though in the limit of infinite data and infinite
from a time series is a well-known mathematical result cenprecisionT may be set to any arbitrary value, a balance be-
tral to almost all nonlinear time series analysis meth@@e tween relevance and redundari@} must be accomplished
[1] for a general introduction It is of paramount importance for real data. Whem is too small, the elements of the delay-
as it ensures that, under certain generic conditions, such @ordinate vectors will mostly be around the bisectrix of the
reconstruction is equivalent to the original phase space. Thighase space and, consequently, the reconstruction will not be
equivalence ensures that differential information is preservedatisfactory. On the contrary, i is too large the delay-
and allows for both qualitative and quantitative analysis.coordinate vectors will become increasingly uncorrelated,
Consider a smooth deterministic dynamical systsh  \yith the consequent loss of ability to recover the underlying
=f(s(to)), either in continuous or discrete time, whose trajec-attractor. In addition, using a time delay larger than neces-
tories are asymptotic to a compattlimensional manifold  sary will render fewer data points for the reconstruction. This
A. When performingk-dimensional measurements, whé&e 4y pe particularly limiting for the study of biological sys-
=1,...,d, a functionx; =h[s(t=i x §)] relates the states of omg \vhere data sets are often not long. The most common
the dynamical system througkllogt time and a time series Qfrocedure for selecting is using the first minimum of time
measured points, where;) €RY, i=1,...,n; nis the total  gelayed mutual information, as proposed by Fraser and
number of sampled p_oints, arlis the sampling time. As a swinney [4]: 1(Xgiy s X7y » ) =H ) +H X m) = H (X X1)
consequence of our ignorance on the system, or of I'm'taiﬁp(xm,X(i+f))|092[p(x(i),X(i+f))/p(X<i))p(X(i+T))], whereH(x)

tions of the measurement apparatus, or simply bgcause it Ig the Shannon entrogyp]. Nonetheless its widespread use
too costly, d-dimensional measurements are typically nOtsome drawbacks can be pointed out to this selection crite-

made[zr,S% Iztth'th{'?;_Rlengt we wil onI?/ adgr?rss tsicﬁlir rion. The first is that probabilities are estimated by creating a
casurements, thal 1&=1. Fhase space reconstructio yhistogram for the probability distribution of the data, which

time de'?y embedglmg IS a method of generating andepends on a heuristic choice of number of bins, for ex-
m-dimensional manifold that is equivalent to the original ample, log of the total number of point&6]. Therefore,|

d-dimensional manifold, by means of a matrix of delay- depends on the partitioning. The second drawback is that it

coo.rdmate ve.ctors..ConS|der a column vector Flme S#UES  contains no dynamical information, which might be incorpo-
Define anm-dimensional matrix of delay-coordinate column a6 by considering transition rather than static probabili-

vectors by adding together displaced copies of the time S&jes phyt such correction is usually not mddé The third is
ries, X=Xy, Xis7)» - Xfiv(m-171]- SUCh MatdXXn_m-1)x~m]  that the selection criterion presented by Fraser and Swinney
is called an embedding matrix, and two parameters need ], though generalized to higher dimensions, was estab-
be optimally estimated. The first is the time delaywhich  |ished for two-dimensional embedding8], and does not
quantifies the time displacement between successive d9|aMecessarin hold for higher dimensional embeddings, as
coordinate vectors. The second is the embedding dimensioghown below. Finally, a fourth drawbadg] is associated
m, which quantifies the number of such delay-coordinateyith the fact that, when the purpose is solely to maximize
vectors. In this Brief Report we only address the estimationstatistical independendet], there is no obvious reason to
of 7, by suggesting a nearest neighbor based procedure agfloose the first minimum over others. We propose an alter-
comparing it to the standard use of time delayed mutual innative measure for selecting time delays, based on nearest
neighbor estimations. This nearest neighbor measure is in-
spired by the false nearest neighbors algorithm proposed by
*Email address: spinto@itgb.unl.pt Kennelet al.[8]. With minimal assumptions, this measure is
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based solely on topological and dynamical arguments docu 2 20

mented by the data. We do not address the estimation. of
The embedding theorem proposed by Takgljsgguarantees _ :
a solution. It states that if a map from the original & of o f¥{- i af-Ht
d-dimensional phase spaced4, to the reconstructed
m-dimensional phase space is generic, whten(2d+1) that :
map is a diffeomorphism o, that is, an embedding, ora  -20 i -20 :
smooth one-to-one map with a smooth inverse. This one-to- ) 5(_’0 1000 0 . 590 1000
one property implies that if the system is deterministic, dis- time index time index
tinct points on the attractad are mapped to distinct points
under the embedding m4g]. Nevertheless, Takens result is [L(
only a sufficient condition according to Kennet al. [8],
who propose the use of false nearest neighlersas a cri-
teria. Their algorithm considers the ratio of Euclidean dis-tance between thendg;. (iii) Consider both points one sam-
tances between a point and its nearest neighbor, first on gling unit ahead and calculate the new Euclidean distance
m-dimensional and then on @+ 1)-dimensional space. If between themg,. (iv) Estimatedg,/dg; and save the num-
the ratio is greater than a given threshold, these points afeer of distance ratios larger than 10. That fraction will be
referred to as F, that is, points that appear to be neareseferred to asN. The threshold value, though heuristically
neighbors not because of the dynamics, but because the &gt, is justified by numerical studi¢8] and has low para-
tractor is being viewed in an embedding space too small ténetric sensitivity(v) Select the first minimum from a profile
unfold it. The procedure is repeated for all points in the timeof N vs 7, which will be the optimal time delay for this first
series. As the fraction of F as a function of the embeddinggmbedding cycler;. We define arembedding cyclas each
space dimension decreases for deterministic systems, whé@gration[steps(i) to (vi)] that adds another dimension to the
its value is zero, the underlying attractor is unfolded and embedding matrix(vi) Estimate the percentage of F. Save
can be optimally estimated. that value as a function of the dimensionality of the tempo-
Considering the problem of optimally selecting time de-rary embedding matrixT. (vii) Consider now matrixX
lays, we will compare two different approaches. The first is & [ X, X+r,)] as the starting point for the second embedding
standard procedure and uses the first minimum of the timeycle. For eachr being tested, build a temporary embedding
delayed mutual information to setfor all dimensiong4]. matrixT:[X(D,x(i”l),x(i”)]. (viii) Repeat step§i) to (vii),
The second, the one we propose, uses the first minimum of eonsidering that points are now three and more dimensional,
nearest neighbor measure to set the time delay for each dimtil the fraction of F drops to 0. As there will be a vector of
mension. Therefore, this second procedure is iterative angdvalues[ry, ..., 1], this procedure is said to uséferent

introduces two novelties: using a nearest neighbor basegine delays and the final embedding matrix will b
measure instead of the time delayed mutual information, ang[x(i)

using different time delays for consecutive dimensions, as . : S
the standard use of the samealue is an assumption out of The_ Lorienz_sy_st_enljl_o] of (_1||;ferent|al equa_t|(1)gs<—_<;(§/
convenience and not imposed by any theoretical argument)i)'y'x(’_J 2)=Y,2=xy—fz, with parametersr= ' P=2,
[3]. In both cases, the embedding dimension is estimated ds-9/3 Will be used as a case study. The equations were
the fraction of F decreases to zero. The implementation ofumerically integrated with a 4-5th order Runge-Kutta algo-
the standard procedure is described beltivConsider an 'ithm and sampled a$=0.01 intervals. Transients were re-
initial column vector time seriesy;,. For eachr being tested, moved. We will consider a first data set, referred td.ax),

-1 10 build beddi T which is the noise-fre& coordinate of Lorenz system. We
7=1,...,35", build a temporary embedding matri

=X Xura] OUL Of two column vectors;, andXs.. The will a}lsp consider a second data_ set, referred td_@s,),

limit f . ¢ arbitrarilv.(ii) Estimate the time d consisting of the noise-free coordinate of the Lorenz sys-
upper imit for 7 1S Set arbitrari yii) stimate the ime dé- o, contaminated with additive Gaussian white noise of
layed mutual information (X, X+,). (iii) Select the first

- ) ) i > mean zero and variance 0.05, 1, 2, 3, or 5. For the major part
minimum from the profile of vs 7, which will be the opti- ¢ this Brief Report, noise of variance 1 will be used. The
mal time delay for all dimensiongolumns of the final em-  oiher variances will be used later to further document the
bedding matrixX. (iv) Estimate the percentage of (BIgo-  effect of noise on the selecting procedures. Real systems
rithm in [8]) as a function of the dimensionality of the 3y also be contaminated with dynamical noise, though we

embedding matrix. The optimal embedding dimension is sefjs not address such possibility here. Each data set includes a
when the fraction of F drops to 0. Asis the same for all total of 8000 points(é)th of which is plotted in Fig. 1.

dimensions it will be referred to asfixed time delayand the The profiles for selecting are displayed in Fig. 2 for the
final .embeddmg matnx Will BE=[X ), Xi+) 'XU+(m—1)T]]' first embedding cycle, and in Fig. 3 for the second embed-
The implementation of the proposed algorithm is as follows ging cycle. Dashed lines represemtrofiles, while solid lines

(i) Consider an initial column vector time serigs. For each  represeniN profiles. Because the standargelecting proce-

7 being testeds=1,... ,1—10n, build a temporary embedding dure uses the same time delay for all dimensions, dhly
matrix T =[X,Xi+n]. (i) For each two-dimensional point, profiles are represented in Fig. 3. Displayed on the upper
that is, for each row in matrixT, estimate its(two-  panels are the profiles far(X) [Fig. 2@ and Fig. 3a)] and
dimensional nearest neighbor. Calculate the Euclidean disd.(X,) of variance 1[Fig. 2b) and Fig. 3b)]. On the lower

LX)

FIG. 1. Data sets: noise-freecoordinate of the Lorenz system
X)], and contaminated with additive Gaussian white noise of
mean 0 and variance[L(X,)].

1X(i+7'1) 1X(i+7'2) (RN ’X(H'T(m—l))]'
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FIG. 2. First embedding cycle profiles fer selection froml
(dashed lingsand N (solid lineg. Upper panel(a) L(X) and (b)
L(X,) of variance 1. Lower panel: zoomed o{®) L(X) and (d)
L(X,) of variance 1. An arrow indicates the global minimumnof
for the noise-free scenar{ga) and(c), solid ling].

panel, zoomed out versions of those same profiles are plotted
to document behavior beyond dynamic coupling. An arrow
indicates the global minimum dN for the noise-free sce-

nario [Figs. 4a) and Zc), Figs. 3a) and 3c), solid lin€].

That same value can still be identified for the first embeddin
cycle of the noisy data sét(X,), though it is no longer a

global minimum[Fig. 2(d), solid line]. As explained previ-

ously, a value forr is selected from the first minimum of the

| profile for bothL(X) andL(X,) [Figs. 4a) and 2b), dashed

line]; and a value forr is selected from the first minimum of

the N profile for bothL(X) and L(X,) [Figs. 4a) and 2b),

solid line]. For the second embedding cycle, an asterisk in
dicatesm;, that is, the value selected in the first embeddin
cycle, while a circle indicates,, that is, the first minimum of

this newN profile [Fig. 3(a)].

0.25 @ 0.8 ®)

Z0.15 Z0.4

Z0.4

0 250 500 0 250 500
T T

FIG. 3. Second embedding cycle profiles faselection fromN.

Upper panelia) L(X) and (b) L(X,,) of variance 1. Lower panel:

zoomed out(c) L(X) and (d) L(X,) of variance 1. An arrow indi-
cates the global minimum dfl for the noise-free scenar|¢a) and
(c)]. An asterisk indicates;, while a circle indicates, [(a)].
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FIG. 4. Second embedding cycle profiles fogelection fromN:
(@ L(X) [as in Fig. 3a)] and L(X,) contaminated with additive
Gaussian white noise of mean 0 and variafiwe0.05, (c) 1 [as in
Fig. 3(b)], (d) 2, () 3, and(f) 5. An arrow indicates the global
minimum of N for the noise-free scenar{as in Fig. 3a)].

Three main conclusions can be drawn from examining the
7 selecting profiles from bothandN for the first and second
embedding cycles. The first is that olyretains the inverse
elationship with structure disclosure, that is, unlikél val-

es return to higher levels when the time delay is too long
for dynamical coupling to be retaingdFig. 2(c) and Fig.
3(c), arrow]. This global minimum suggests an upper limit
for the efficient selection of, beyond which statistical inde-
pendence reflects dynamic decoupling, and provides the
strongest argument for the use Nfover |I. The effect of
noise will be discussed later. The second observation is that

the profiles for both embedding cycles are strikingly differ-
ent, indicating that reusing the time delay from a previous
embedding cycle is not an efficient procedure, asNh&o-

file peaks atr; [Fig. 3(a@), asterisk This peaking, an inter-
esting but presently unclear feature, was consistently ob-
served for all embedding cycles, and not only for the data
sets analyzed here but also for other systems, such as the
Rossler attractofll], not shown here for space constraints.
The third conclusion refers to the disruptive effect of addi-
tive noise, particularly clear in Fig.(B). To further docu-
ment such effect, profiles froil for the second embedding
cycle and additive Gaussian white noise of different vari-
ances are displayed in Fig. 4. The noise-free scen&im
4(a), as in Fig. 3a)] is compared to additive Gaussian white
noise of mean 0 and variance 0J[058g. 4(b)], 1 [Fig. 4(c), as

in Fig. 3(b)], 2[Fig. 4d)], 3[Fig. 4e)], and 5[Fig. 4(f)]. All
profiles peak exactly at;, as had been previously observed
in Fig. 3. Interestingly, the- value that is a global minimum

in the noise-free scenar{é-ig. 4(a), arrow] is in most cases
still identifiable. This feature may be a helpful guideline, for
the global minimum, though being a suboptimal choice, sets
the upper limit for the selection of values.

The second part of phase space reconstruction implies the
estimation of the embedding dimension. Figure 5 documents
the profiles of F for increasing values, for the noise-free
L(X) data set. A dashed line represents the conventional use
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1 7 values. A thin solid line represents selecting the global
0.8} minimum ofN as ther value for all embedding cycles, and it
0.6 \\ is clearly a suboptimal choice. This further confirms the rel-

w o \\\ evance of the global minimum as a criterion for upper lim-
0.4 Y iting the region where the selection of time delays should be
0.2 i made.

2 In summary, the nearest neighbor measure we propose,
1 2 n 3 4 unlike mutual information, retains the inverse relationship

) . _ with structure disclosure. This is an extremely useful feature
~ FIG. 5. Profiles form selection from F forl(X): selecting a  for analyzing noisy time series as it allows for the determi-
fixed 7 from the first minimum of (dashed ling different r values nation of an upper limit to an efficient selection of time
fLom lths ];'rSt. mlnlmurr;\loﬁ:_(th|c:§dslc_)||d ling, and a fixedr from 4o 5vs Another extremely important result is that the use of
the global minimum oM (thin solid ling. different time delays is more efficient than the conventional

) . _ . o use of a fixed time delay.
of I and fixed time delays, while a thick solid line represents

usingN and selecting different time delays. The reconstruc- The authors thank S. Vinga for helpful comments. This
tion using the later is more efficient, in the sense that, thoughvork was supported by Grants No. SFRH/BD/1165/2000 and
both| andN suggesm=3 as the optimal embedding dimen- No. POCTI/1999/BSE/34794 from Fundacéo para a Ciéncia
sion, the percentage of F whem=2 is lower forN. We have e a Tecnologia, Portugal, and by the National Heart, Lung
argued that the global minimum & from the noise-free and Blood InstitutéNIH) Proteomics Initiative through Con-
scenario would be an upper limit for the efficient selection oftract No. NO1-HV-28181D Knapp, P).
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