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A nearest neighbor based selection of time delays for phase space reconstruction is proposed and compared
to the standard use of time delayed mutual information. The possibility of using different time delays for
consecutive dimensions is considered. A case study of numerically generated solutions of the Lorenz system is
used for illustration. The effect of contamination with various levels of additive Gaussian white noise is
discussed.
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Reconstructing the phase space of a dynamical system
from a time series is a well-known mathematical result cen-
tral to almost all nonlinear time series analysis methodsssee
f1g for a general introductiond. It is of paramount importance
as it ensures that, under certain generic conditions, such a
reconstruction is equivalent to the original phase space. This
equivalence ensures that differential information is preserved
and allows for both qualitative and quantitative analysis.
Consider a smooth deterministic dynamical systemsstd
= f(sst0d), either in continuous or discrete time, whose trajec-
tories are asymptotic to a compactd-dimensional manifold
A. When performingk-dimensional measurements, wherek
=1,… ,d, a functionxsid=hfsst= i 3ddg relates the states of
the dynamical system throughout time and a time series of
measured points, wherexsid[Rk, i =1,… ,n; n is the total
number of sampled points, andd is the sampling time. As a
consequence of our ignorance on the system, or of limita-
tions of the measurement apparatus, or simply because it is
too costly, d-dimensional measurements are typically not
madef2,3g. In this Brief Report we will only address scalar
measurements, that is,k=1. Phase space reconstruction by
time delay embedding is a method of generating an
m-dimensional manifold that is equivalent to the original
d-dimensional manifold, by means of a matrix of delay-
coordinate vectors. Consider a column vector time seriesxsid.
Define anm-dimensional matrix of delay-coordinate column
vectors by adding together displaced copies of the time se-
ries,X =fxsid ,xsi+td ,… ,xfi+sm−1dtgg. Such matrixX fn−sm−1d3t,mg
is called an embedding matrix, and two parameters need to
be optimally estimated. The first is the time delayt, which
quantifies the time displacement between successive delay-
coordinate vectors. The second is the embedding dimension
m, which quantifies the number of such delay-coordinate
vectors. In this Brief Report we only address the estimation
of t, by suggesting a nearest neighbor based procedure and
comparing it to the standard use of time delayed mutual in-

formation. Though in the limit of infinite data and infinite
precisiont may be set to any arbitrary value, a balance be-
tween relevance and redundancyf3g must be accomplished
for real data. Whent is too small, the elements of the delay-
coordinate vectors will mostly be around the bisectrix of the
phase space and, consequently, the reconstruction will not be
satisfactory. On the contrary, ift is too large the delay-
coordinate vectors will become increasingly uncorrelated,
with the consequent loss of ability to recover the underlying
attractor. In addition, using a time delay larger than neces-
sary will render fewer data points for the reconstruction. This
may be particularly limiting for the study of biological sys-
tems, where data sets are often not long. The most common
procedure for selectingt is using the first minimum of time
delayed mutual information, as proposed by Fraser and
Swinney f4g: Isxsid ,xsi+td ,td=Hsxsidd+Hsxsi+tdd−Hsxsid ,xsi+tdd
=opsxsid ,xsi+tddlog2fpsxsid ,xsi+tdd /psxsiddpsxsi+tddg, whereHsxd
is the Shannon entropyf5g. Nonetheless its widespread use,
some drawbacks can be pointed out to this selection crite-
rion. The first is that probabilities are estimated by creating a
histogram for the probability distribution of the data, which
depends on a heuristic choice of number of bins, for ex-
ample, log2 of the total number of pointsf6g. Therefore,I
depends on the partitioning. The second drawback is that it
contains no dynamical information, which might be incorpo-
rated by considering transition rather than static probabili-
ties, but such correction is usually not madef7g. The third is
that the selection criterion presented by Fraser and Swinney
f4g, though generalized to higher dimensions, was estab-
lished for two-dimensional embeddingsf3g, and does not
necessarily hold for higher dimensional embeddings, as
shown below. Finally, a fourth drawbackf3g is associated
with the fact that, when the purpose is solely to maximize
statistical independencef4g, there is no obvious reason to
choose the first minimum over others. We propose an alter-
native measure for selecting time delays, based on nearest
neighbor estimations. This nearest neighbor measure is in-
spired by the false nearest neighbors algorithm proposed by
Kennelet al. f8g. With minimal assumptions, this measure is*Email address: spinto@itqb.unl.pt
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based solely on topological and dynamical arguments docu-
mented by the data. We do not address the estimation ofm.
The embedding theorem proposed by Takensf9g guarantees
a solution. It states that if a map from the original
d-dimensional phase spaceA, to the reconstructed
m-dimensional phase space is generic, whenmù s2d+1d that
map is a diffeomorphism onA, that is, an embedding, or a
smooth one-to-one map with a smooth inverse. This one-to-
one property implies that if the system is deterministic, dis-
tinct points on the attractorA are mapped to distinct points
under the embedding mapf2g. Nevertheless, Takens result is
only a sufficient condition according to Kennelet al. f8g,
who propose the use of false nearest neighborssFd as a cri-
teria. Their algorithm considers the ratio of Euclidean dis-
tances between a point and its nearest neighbor, first on a
m-dimensional and then on asm+1d-dimensional space. If
the ratio is greater than a given threshold, these points are
referred to as F, that is, points that appear to be nearest
neighbors not because of the dynamics, but because the at-
tractor is being viewed in an embedding space too small to
unfold it. The procedure is repeated for all points in the time
series. As the fraction of F as a function of the embedding
space dimension decreases for deterministic systems, when
its value is zero, the underlying attractor is unfolded andm
can be optimally estimated.

Considering the problem of optimally selecting time de-
lays, we will compare two different approaches. The first is a
standard procedure and uses the first minimum of the time
delayed mutual information to sett for all dimensionsf4g.
The second, the one we propose, uses the first minimum of a
nearest neighbor measure to set the time delay for each di-
mension. Therefore, this second procedure is iterative and
introduces two novelties: using a nearest neighbor based
measure instead of the time delayed mutual information, and
using different time delays for consecutive dimensions, as
the standard use of the samet value is an assumption out of
convenience and not imposed by any theoretical argument
f3g. In both cases, the embedding dimension is estimated as
the fraction of F decreases to zero. The implementation of
the standard procedure is described below.sid Consider an
initial column vector time seriesxsid. For eacht being tested,
t=1,… , 1

10n, build a temporary embedding matrixT
=fxsid ,xsi+tdg out of two column vectorsxsid and xsi+td. The
upper limit for t is set arbitrarily.sii d Estimate the time de-
layed mutual informationIsxsid ,xsi+tdd. siii d Select the first
minimum from the profile ofI vs t, which will be the opti-
mal time delay for all dimensionsscolumnsd of the final em-
bedding matrixX. sivd Estimate the percentage of Fsalgo-
rithm in f8gd as a function of the dimensionality of the
embedding matrix. The optimal embedding dimension is set
when the fraction of F drops to 0. Ast is the same for all
dimensions it will be referred to as afixed time delay, and the
final embedding matrix will beX =fxsid ,xsi+td ,… ,xfi+sm−1dtgg.
The implementation of the proposed algorithm is as follows.
sid Consider an initial column vector time seriesxsid. For each
t being tested,t=1,… , 1

10n, build a temporary embedding
matrix T =fxsid ,xsi+tdg. sii d For each two-dimensional point,
that is, for each row in matrixT, estimate its stwo-
dimensionald nearest neighbor. Calculate the Euclidean dis-

tance between them,dE1. siii d Consider both points one sam-
pling unit ahead and calculate the new Euclidean distance
between them,dE2. sivd EstimatedE2/dE1 and save the num-
ber of distance ratios larger than 10. That fraction will be
referred to asN. The threshold value, though heuristically
set, is justified by numerical studiesf8g and has low para-
metric sensitivity.svd Select the first minimum from a profile
of N vs t, which will be the optimal time delay for this first
embedding cycle,t1. We define anembedding cycleas each
iterationfstepssid to svidg that adds another dimension to the
embedding matrix.svid Estimate the percentage of F. Save
that value as a function of the dimensionality of the tempo-
rary embedding matrixT. svii d Consider now matrixX
=fxsid ,xsi+t1dg as the starting point for the second embedding
cycle. For eacht being tested, build a temporary embedding
matrix T =fxsid ,xsi+t1d ,xsi+tdg. sviii d Repeat stepssii d to svii d,
considering that points are now three and more dimensional,
until the fraction of F drops to 0. As there will be a vector of
t valuesft1,… ,tsm−1dg, this procedure is said to usedifferent
time delays, and the final embedding matrix will beX
=fxsid ,xsi+t1d ,xsi+t2d ,… ,xsi+tsm−1dd

g.
The Lorenz systemf10g of differential equationsẋ=ssy

−xd , ẏ=xsr−zd−y, ż=xy−bz, with parameterss=10, r=28,
b=8/3 will be used as a case study. The equations were
numerically integrated with a 4–5th order Runge-Kutta algo-
rithm and sampled atd=0.01 intervals. Transients were re-
moved. We will consider a first data set, referred to asLsXd,
which is the noise-freex coordinate of Lorenz system. We
will also consider a second data set, referred to asLsXhd,
consisting of the noise-freex coordinate of the Lorenz sys-
tem contaminated with additive Gaussian white noise of
mean zero and variance 0.05, 1, 2, 3, or 5. For the major part
of this Brief Report, noise of variance 1 will be used. The
other variances will be used later to further document the
effect of noise on thet selecting procedures. Real systems
may also be contaminated with dynamical noise, though we
do not address such possibility here. Each data set includes a
total of 8000 points,s 1

8
dth of which is plotted in Fig. 1.

The profiles for selectingt are displayed in Fig. 2 for the
first embedding cycle, and in Fig. 3 for the second embed-
ding cycle. Dashed lines representI profiles, while solid lines
representN profiles. Because the standardt selecting proce-
dure uses the same time delay for all dimensions, onlyN
profiles are represented in Fig. 3. Displayed on the upper
panels are the profiles forLsXd fFig. 2sad and Fig. 3sadg and
LsXhd of variance 1fFig. 2sbd and Fig. 3sbdg. On the lower

FIG. 1. Data sets: noise-freex coordinate of the Lorenz system
fLsXdg, and contaminated with additive Gaussian white noise of
mean 0 and variance 1fLsXhdg.
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panel, zoomed out versions of those same profiles are plotted
to document behavior beyond dynamic coupling. An arrow
indicates the global minimum ofN for the noise-free sce-
nario fFigs. 2sad and 2scd, Figs. 3sad and 3scd, solid lineg.
That same value can still be identified for the first embedding
cycle of the noisy data setLsXhd, though it is no longer a
global minimumfFig. 2sdd, solid lineg. As explained previ-
ously, a value fort is selected from the first minimum of the
I profile for bothLsXd andLsXhd fFigs. 2sad and 2sbd, dashed
lineg; and a value fort1 is selected from the first minimum of
the N profile for bothLsXd and LsXhd fFigs. 2sad and 2sbd,
solid lineg. For the second embedding cycle, an asterisk in-
dicatest1, that is, the value selected in the first embedding
cycle, while a circle indicatest2, that is, the first minimum of
this newN profile fFig. 3sadg.

Three main conclusions can be drawn from examining the
t selecting profiles from bothI andN for the first and second
embedding cycles. The first is that onlyN retains the inverse
relationship with structure disclosure, that is, unlikeI, N val-
ues return to higher levels when the time delay is too long
for dynamical coupling to be retainedfFig. 2scd and Fig.
3scd, arrowg. This global minimum suggests an upper limit
for the efficient selection oft, beyond which statistical inde-
pendence reflects dynamic decoupling, and provides the
strongest argument for the use ofN over I. The effect of
noise will be discussed later. The second observation is that
the profiles for both embedding cycles are strikingly differ-
ent, indicating that reusing the time delay from a previous
embedding cycle is not an efficient procedure, as theN pro-
file peaks att1 fFig. 3sad, asteriskg. This peaking, an inter-
esting but presently unclear feature, was consistently ob-
served for all embedding cycles, and not only for the data
sets analyzed here but also for other systems, such as the
Rössler attractorf11g, not shown here for space constraints.
The third conclusion refers to the disruptive effect of addi-
tive noise, particularly clear in Fig. 3sbd. To further docu-
ment such effect, profiles fromN for the second embedding
cycle and additive Gaussian white noise of different vari-
ances are displayed in Fig. 4. The noise-free scenariofFig.
4sad, as in Fig. 3sadg is compared to additive Gaussian white
noise of mean 0 and variance 0.05fFig. 4sbdg, 1 fFig. 4scd, as
in Fig. 3sbdg, 2 fFig. 4sddg, 3 fFig. 4sedg, and 5fFig. 4sfdg. All
profiles peak exactly att1, as had been previously observed
in Fig. 3. Interestingly, thet value that is a global minimum
in the noise-free scenariofFig. 4sad, arrowg is in most cases
still identifiable. This feature may be a helpful guideline, for
the global minimum, though being a suboptimal choice, sets
the upper limit for the selection oft values.

The second part of phase space reconstruction implies the
estimation of the embedding dimension. Figure 5 documents
the profiles of F for increasingm values, for the noise-free
LsXd data set. A dashed line represents the conventional use

FIG. 2. First embedding cycle profiles fort selection fromI
sdashed linesd and N ssolid linesd. Upper panel:sad LsXd and sbd
LsXhd of variance 1. Lower panel: zoomed outscd LsXd and sdd
LsXhd of variance 1. An arrow indicates the global minimum ofN
for the noise-free scenariofsad and scd, solid lineg.

FIG. 3. Second embedding cycle profiles fort selection fromN.
Upper panel:sad LsXd and sbd LsXhd of variance 1. Lower panel:
zoomed outscd LsXd and sdd LsXhd of variance 1. An arrow indi-
cates the global minimum ofN for the noise-free scenariofsad and
scdg. An asterisk indicatest1, while a circle indicatest2 fsadg.

FIG. 4. Second embedding cycle profiles fort selection fromN:
sad LsXd fas in Fig. 3sadg and LsXhd contaminated with additive
Gaussian white noise of mean 0 and variancesbd 0.05, scd 1 fas in
Fig. 3sbdg, sdd 2, sed 3, and sfd 5. An arrow indicates the global
minimum of N for the noise-free scenariofas in Fig. 3sadg.
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of I and fixed time delays, while a thick solid line represents
usingN and selecting different time delays. The reconstruc-
tion using the later is more efficient, in the sense that, though
both I andN suggestm=3 as the optimal embedding dimen-
sion, the percentage of F whenm=2 is lower forN. We have
argued that the global minimum ofN from the noise-free
scenario would be an upper limit for the efficient selection of

t values. A thin solid line represents selecting the global
minimum ofN as thet value for all embedding cycles, and it
is clearly a suboptimal choice. This further confirms the rel-
evance of the global minimum as a criterion for upper lim-
iting the region where the selection of time delays should be
made.

In summary, the nearest neighbor measure we propose,
unlike mutual information, retains the inverse relationship
with structure disclosure. This is an extremely useful feature
for analyzing noisy time series as it allows for the determi-
nation of an upper limit to an efficient selection of time
delays. Another extremely important result is that the use of
different time delays is more efficient than the conventional
use of a fixed time delay.
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